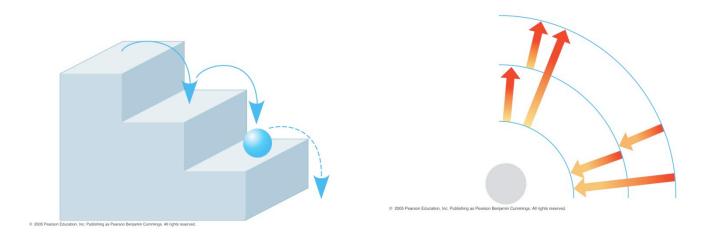
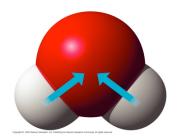

Unit 1: Biochemistry

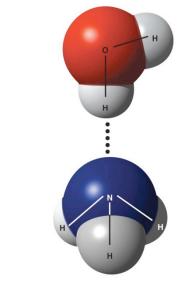
Section 1-2: Basic Chemistry, Organic Chemistry and Water Book Reading: Chapter 2 pages 34-43; Chapter 4 pages 58-66, Chapter 3 pages 47-55


Organization of Matter

- ❖ Atoms and Subatomic Particles
 - Atoms are made up of three subatomic Particles
 - Protons- *location and charge*
 - Neutron- location and charge
 - Electrons- *location and charge*

- Atomic Number and Atomic Mass
 - Atomic Number- *What is the atomic number equal to?*
 - Atomic Mass- What is the atomic mass number equal to?
- Example: Fluorine


- Electrons and Energy
 - Energy- *Define*
 - What is the cause of potential energy in the electrons of an atom?
 - Electrons farther from the nucleus contain more or less energy?
 - Electrons closer to the nucleus contain *more or less energy?*
 - How can electron change the shell it occupies?


Chemical Compounds and Types of Bonds

- Chemical Bonding
 - Chemical bonding is controlled by two factors:
 - Valence electrons- define
 - Electronegativity- define
 - The more valence electrons an atom has, the more electronegative it is
- Covalent Bonds
 - How are they formed?
 - Molecule- *define*
 - Two atoms can be bonded together by one or multiple pairs of electrons
 - Single bonds- share how many electrons?
 - Double bonds- share how many electrons?
 - Triple bonds- share how many electrons?

- Polar Covalent Bonds
 - define
 - describe

- ❖ Ionic Bonds
 - define
 - describe
- ❖ Weak Chemical "Bonds"
 - Hydrogen Bonds
 - define/describe
 - Biological uses of hydrogen bonding include:
 - list
 - _
 - _
 - _

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserve

- Van der Walls Interactions
 - define
 - Important in the folding and stabilization of large macromolecules such as proteins and nucleic acids

Carbon and Molecular Diversity

Carbon

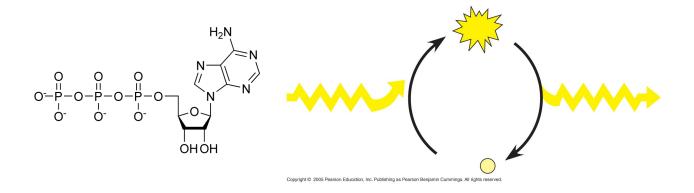
- Carbon is the main component in all organic compounds
- Tetravalance- define
- Simple Carbon Model:

Hydrocarbons

- define
- Properties of hydrocarbons include:
 - What kinds of bonds do they contain? Polar or nonpolar?
 - Describe how they interact with water. Hydrophilic or hydrophobic? Soluble or insoluble?
 - They undergo reactions that can release massive amounts of energy
- Hydrocarbons do not exist alone in biological organisms but form portions of larger more complex molecules

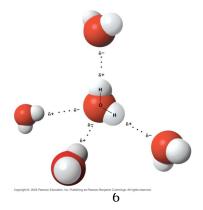
Functional Groups

- Function groups are the components of organic molecules that are most commonly involved in chemical reactions
- They in essence are groups of atoms that replace one or more of the hydrogen atoms on a hydrocarbon chain
- The number and arrangement of functional groups gives each macromolecule its unique properties


Functional Groups				
Name of Functional Group	Name of Compound	Properties	Picture	
Hydroxyl	Fill in this column only,			
	we will do the others in			
	class			
Carbonyl				
(at the end)				
Carbonyl (within)				
Carboxyl				
car bony i				
Amaina				
Amino				
Phosphate				
Sulfhydryl				

❖ Adenosine Triphosphate: ATP

• Why is ATP important?


•

• When ATP looses one phosphate what happens?

Chemical Structure of Water

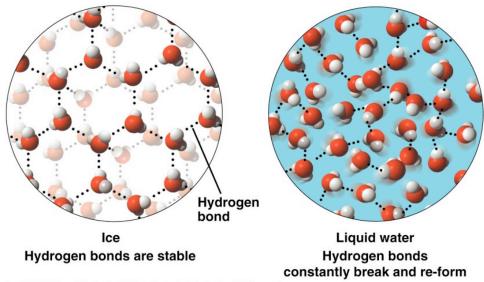
- Chemical Bonding and Structure
 - Water is a polar molecule
 - Describe how and why the bonds in water are polar.
 - What is the overall shape of the water molecule?
 - With what element is the partially negative charge associated?
 - With what element is the partially negative charge associated?
 - Because of hydrogen bonding, water is more structured than most other liquids

Properties of Water that Contribute to Life on Earth

*	Cohesive	Behavior
---	----------	----------

- Cohesion
 - define
 - .
- Adhesion
 - define
 - .
- Surface Tension
 - define
 - .
- Application
 - What are some biological uses for cohesion and adhesion?
 - What are some biological uses for surface tension?

Temperature Moderation


- Heat vs. Temperature
 - Heat- *define*
 - Temperature- define
 - Heat always moves- from what to what
 - What must happen for the overall temperature of something to increase?

•	Specific H	Specific Heat		
	■ De	efine ————————————————————————————————————		
	• <i>Is</i>	the specific heat of water high or low? What does this mean?		
		-		
•	Evaporati	ive Cooling		
	• W	ater has a high heat of vaporization- define heat of vaporization		
		_		
		_		

• Applications

Expansion Upon Freezing

- What happens to the density of water as it freezes?
- how do the hydrogen bonds contribute to the structure of frozen water?
- The surface of bodies of water, as heat is lost freeze and float on top, in essence insulating the water below so that it may still sustain life

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Solvation Behavior

- Water is the solvent of life
 - What kinds of compounds are soluble in water?
 - Describe the process of water dissolving a substance.
- Concentration
 - Molarity is a measure of the concentration of a solution
 - What is the formula for molarity?

- Hydrophobic vs. Hydrophilic
 - Hydrophilic
 - define
 - Not the same thing as soluble
 - Large molecules that have polar regions can be hydrophilic, without actually dissolving
 - Hydrophobic
 - define
 - Substances with mostly nonpolar bonds are hydrophobic
 - It does not have to be an entire molecule that is hydrophilic or hydrophobic, regions of molecules can be hydrophobic or hydrophilic as well

Acids, Bases, and pH

- Acids and Bases
 - Acids
 - Define, using the definition in your biology book, not the one from chemistry!
 - Acidic solutions have more hydrogen ions than hydroxide ions
 - Bases
 - Define, using the definition in your biology book, not the one from chemistry!
 - Accepts hydrogen ions
 - Increases the number of hydroxide ions
- **♦** рН
- What is the pH scale?
- Biological processes have very specific ranges of pH in which they can function at optimal levels
- As the hydrogen ion concentration increases, what happens to the pH?
- How does a change on the pH scale relate to a change in the hydrogen ion concentration? Is it a 1:1 ratio?
- When the pH changes slightly the H+ concentration changes by a factor of 10