Unit 1: Biochemistry

Section 1-4: Nucleic Acids and DNA Replication Book Reading: Chapter 5 pages 86-89; Chapter 16 pages 293-307

Structure of Nucleotides and Polynucleotides

- ❖ Nucleic Acids include DNA and RNA
- ❖ Nucleotides are the monomers of polynucleotides and contain three major parts
 - Phosphate group (this is associated with the 5' end of the DNA molecule)
 - Pentose sugar (this is associated with the 3' end of the DNA molecule)
 - RNA- name the sugar
 - DNA- name the sugar
 - Nitrogenous Base
 - Purines (2 rings)
 - list
 - •
 - Pyrimidines (1 ring)
 - list
 - (DNA only)
 - (RNA only)
- Formation of Polynucleotides
 - What kind of reactions link nucleotides together?
 - What is the name given to the covalent bond between nucleotides?
 - To what end of the chain are new nucleotides added?
 - This is why we say that DNA is built in a 5' to 3' direction

•

The DNA Double Helix

- ❖ The two strands of the double helix are arranged in an antiparallel fashion, one of them going 5′-3′ and the other one going in the opposite direction
- ❖ The "backbone"
 - Composed of what?
 - How are they linked together?
- The "rungs" of the ladder
 - Made up of?
 - How are they bonded to each other across the helix?
 - How does the hydrophobic/hydrophilic nature of the nitrogenous bases make them uniquely suited for their placement on the inside of the double helix?
 - Complimentary base pairing- how are the bases in the DNA paired?
 - A always to T (with two hydrogen bonds)
 - C always to G (with three hydrogen bonds)

(b) Partial chemical structure

• Chargraff's Rule- *define*

DNA vs. RNA

- DNA and RNA are both considered nucleic acid
- ❖ DNA and RNA have several differences in structural components

	DNA	RNA
Number of Strands		
Pentose Sugar		
Nitrogenous Bases		

- Functions of DNA
 - list
 - •
 - •

- Functions of RNA
 - · Ribosomal RNA
 - rRNA
 - what is its function?
 - Transfer RNA
 - tRNA
 - what is its function?
 - Messenger RNA
 - mRNA
 - what is its function?

DNA Replication

- Models of DNA Replication
 - Conservative model- *define*
 - Semiconservative Model- *define*
 - Dispersive Model- *define*
- The Origin of Replication
 - define
 - Prokaryotes have circular DNA and only one origin of replication
 - Eukaryotes may have many origins of replication that result in several replication bubbles that eventually fuse
 - Enzymes Involved in early portions of DNA replication include:
 - Helicase- function
 - Topoisomerase- *function*
 - Single-strand Binding Protein-function

- ❖ The Energy Requirements of DNA Synthesis
 - Each new nucleotide enters as a nucleoside triphosphate
 - The triphosphate portion of the nucleoside carries a lot of potential energy due to the negative charges grouped together
 - As the nucleotide binds to the DNA strand, it loses two of its phosphate groups
 - The two phosphate groups are then separated, releasing energy that drives the process of polymerization of the new DNA
- Synthesis of the Leading Strand (read this section in the book, but I will give you detailed notes during lecture of the important features)
 - •
 - Primase-
 - DNA Polymerase III
 - DNA Polymerase I
 - DNA Ligase

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Synthesis of the Lagging Strand (read this section in the book, but I will give you detailed notes during lecture of the important features)

•

•

- Primase
- DNA Polymerase III
- DNA Polymerase I
- DNA ligase

DNA Replication Machine

- First way in which the traditional model of representing DNA as a railroad track along which the enzymes move is inaccurate
- Second reason
- In eukaryotic cells, multiple copies of the DNA machine are likely anchored in the nuclear matrix to copy multiple chromosomes at a time
- Proofreading and Repair
 - Proofreading
 - occurs simultaneously with replication
 - how does it work?
 - Repair Mechanisms- Nucleotide Excision Repair
 - Several DNA repair enzymes have evolved to recognize problems in DNA
 - Nuclease- what does it do?
 - DNA polymerase what does it do?
 - DNA ligase- what does it do?

Erosion of Gene Coding DNA and Aging

- The problem with the lagging strand in eukaryotic DNA
 - DNA polymerase can only add nucleotides to the 3' end of a strand
 - After the primer at the end of the lagging strand is removed, DNA polymerase cannot add new nucleotides
 - why is this a problem?

Telomers

- Telomers what are they?
- What is their function?
- Telomers do not prevent DNA shortening, but do postpone the erosion of genes

Telomerase

- What is it?
- In what cells is it active?