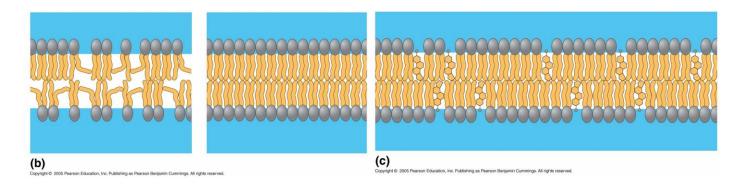

Unit 2: Cellular Organization and Processes

Section 2-2: Membrane Structure and Transport Book Reading: Chapter 7 pages 124-138; Chapter 36 pages 739-742

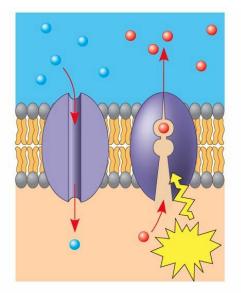
General Structure and Function

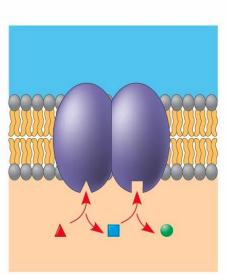
- Phospholipid Bilayer
 - The membrane is composed of two layers of phospholipids
 - Phospholipids are ampipathic
 - the head is hydrophobic or hydrophyllic?
 - the tail is hydrophobic or hydrophyllic?
 - Arranged in such a way that the heads face out toward the cytoplasm or extracellular space, and the tails face each other on the inside of the membrane
- Selectively Permeable
 - define

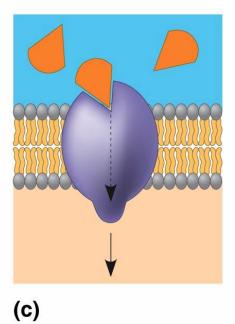


Fluid Mosaic Model

Fluidity

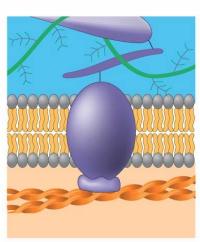

- Phospholipids can change places rapidly
- Proteins can also move fluidly throughout the membrane
 - Slower rate because of what
 - More structured movement, likely guided by the cytoskeleton in some way
- ✤ Maintaining Fluidity
 - Decrease in temperature can cause the phospholipid bilayer to *do what*?
 - Unsaturated hydrocarbons help maintain fluidity *how*?


- Cholesterol molecules in the membranes of animals has several effects on fluidity:
 - At normal temperatures,
 - Advantage as the temperature drops however, because the cholesterol helps the membrane



Mosaic

- Refers to the various proteins that are found in/on the membrane
 - Integral Proteins/Transmembrane Proteins- where are they specifically located?
 - Peripheral Proteins- where are they specifically located?
- General Functions of Membrane Proteins
 - Transport-
 - Channel
 - Carrier
 - Enzymatic Activity-
 - Signal Transduction-
 - Cell-to Cell Recognition-
 - Intercellular joining-
 - Attachment to the cytoskeleton and extracellular matrix-



(f)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

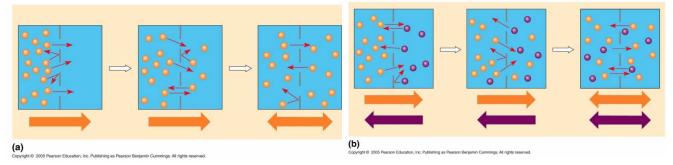
- ✤ Role of Carbohydrates in Cell-to Cell Recognition
 - Membrane carbohydrates are usually *shaped how?* •

(e)

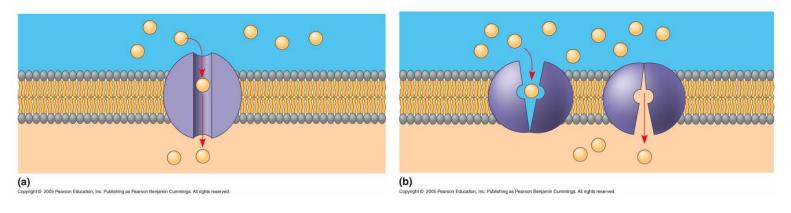
- Function in cell-to-cell recognition •
 - list

(d)

- Glycolipid- *define* •
- Glycoprotein- *define* •

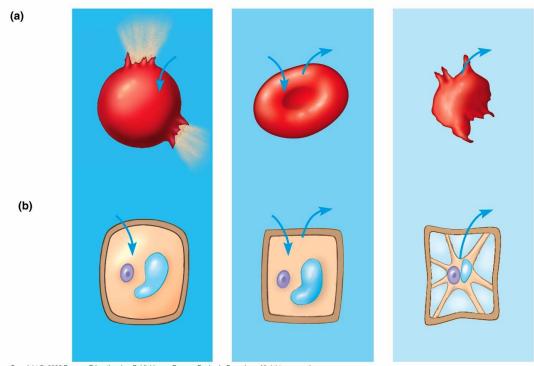

Two Kinds of Transport Proteins

- The Rules of Membrane Passage
 - The plasma membrane is hydrophobic and phospholipids are tightly packed- *what kinds of molecules are able to cross the membrane quickly?*
 - Oxygen
 - Carbon dioxide
 - Hydrocarbons
 - If a chemical is "too charged or too large" it must have another way to get across the membrane
- Channel Proteins
 - what do they provide?
 - Aquaporins- *define*
- Carrier Proteins
 - How do they function? What kinds of molecules do they carry?


Passive Transport

Passive Transport- *define*

- Diffusion
 - define
 - Molecules will move down their concentration gradient until the substance is evenly spread
 - Diffusion is a *spontaneous/nonspontaneous?* process
 - It can occur for small, nonpolar substances directly across a membrane



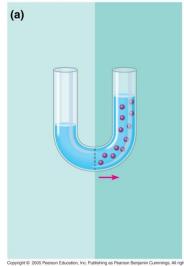
- Facilitated Diffusion
 - The diffusion of a substance with the assistance of a transport protein
 - Channel proteins-
 - Aquaporins
 - Ion Channels
 - Gated Channels
 - Carrier proteins-

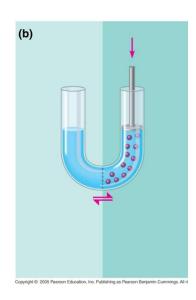
- ✤ Osmosis
 - define
 - Tonicity
 - define
 - Dependent on the concentration of *what* that cannot cross the membrane
 - Hypotonic Solution
 - Contains more, less, or the same amount of dissolved solutes as the cell?
 - Will cause water to *do what*
 - Animal cell will *do what*
 - Plant cell will *do what*
 - Favorable condition for a *what kind of cell*?
 - Isotonic Solution
 - Contains more, less, or the same amount of dissolved solutes as the cell?
 - Will cause water to *do what*

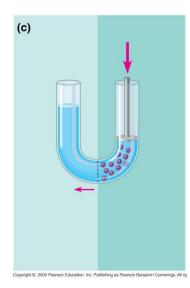
- Animal cell will *do what*
- A plant cell will become *what?*
- Hypertonic Solution
 - Contains more, less, or the same amount of dissolved solutes as the cell?
 - Will cause water to *do what*
 - Animal cell will *do what*
 - Plant cell will undergo plasmolysis- *define*

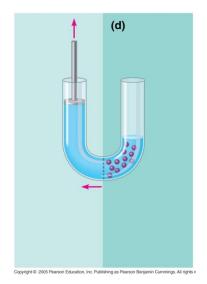
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Water Potential

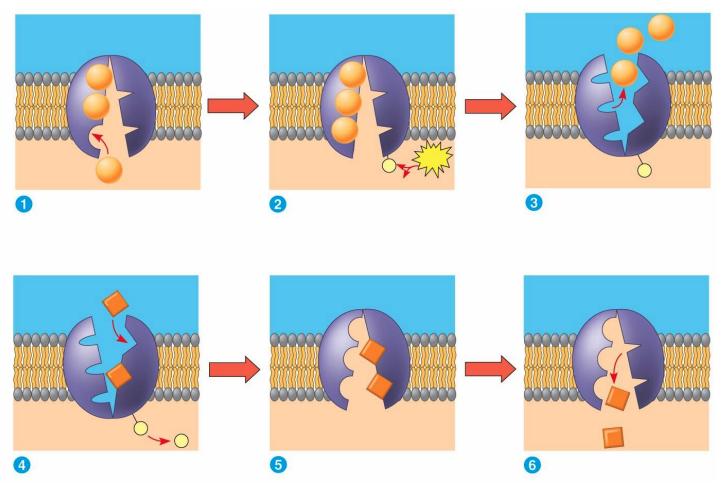

- The Problem with Cell Walls
 - Osmosis can easily be predicted when there is not a physical barrier to stand in the way of the movement of water into our out of a cell
 - Plant cells have cell walls so osmosis into our out of a plant cell depends on two factors:
 - list
 - .


Water Potential

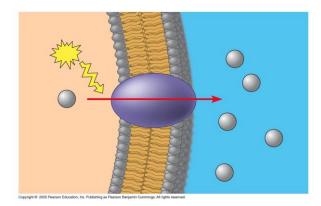

- Water potential (Ψ) is *define*
- Measured in units of *what*
- When water is bound to a solute
- Water will ALWAYS move from *where to where?*
- The Formula
 - $\Psi = \Psi_s + \Psi_p$
 - $\Psi_s = stands$ for what
 - Solute potential of pure water is
 - Adding a solute ALWAYS lowers solute potential so it can be negative, but never positive
 - $\Psi_{\rm p}$ = stands for what
 - Can be positive or negative relative to atmospheric potential
 - Turgor Pressure results when the cell is under positive pressure relative to the atmosphere


Examples

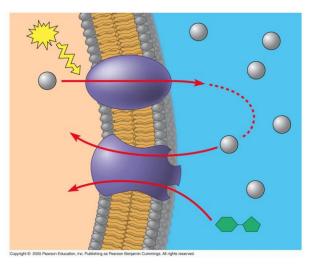
• Be prepared to calculate water potential



- ✤ Another Wacky Formula
 - Solute Potential Ψ_s = -iCRT
 - i=
- unique to
- in chemistry represented by K_{eq}
- C= molar concentration of the solute (molarity)
- R= Pressure constant 0.831 L*atm/mol*K
- T= Temperature in Kelvin (°C+ 273)


Active Transport

- ✤ Active Transport- *define*
- Electrogenic pumps
 - Membrane protein that generates voltage across a membranes by actively pumping ions across a membrane to contribute to membrane potential
 - Membrane Potential
 - Voltage-


- Cytoplasm is in general more
- Sodium Potassium Pump
 - Found in *what kinds of organisms?*
 - Pumps out 3 sodium ions for every two potassium ions that enter the cell
 - Helps to keep the inside of the cell at a

- Proton Pump
 - Found in *what kinds of organisms*
 - Pumps hydrogen ions (protons)
 - Uses ATP therefore is *what kind of transport*
 - Results in a proton gradient with higher H+ located where? Inside or outside of cell?
 - Produces a membrane potential- a separation of opposite charges across a membrane that is a form of potential energy that can be harnessed by the cell to perform cellular work

- Cotransport (an example of using proton pump action)
 - Coupling the "downhill" diffusion of a substance with the "uphill" diffusion of another substance against its concentration gradient

Bulk Transport

- Exocytosis
 - Vesicle that has left the golgi apparatus moves toward the plasma membrane
 - The membrane of the vesicle fuses with that of the plasma membrane and releases the contents to the outside
 - Common in secretory cells
- Endocytosis
 - Cell takes in macromolecues and small matter by forming new vesicles from the plasma membrane
 - Essentially the opposite of exocytosis
 - Examples:

- Phagocytosis
- Pinocytosis
- Receptor-mediated endocytosis