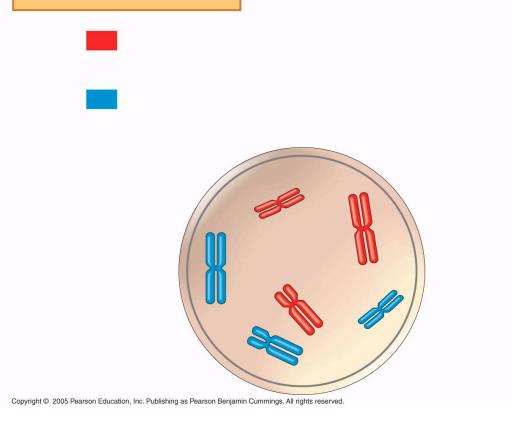
Unit 2: Cellular Organization and Processes

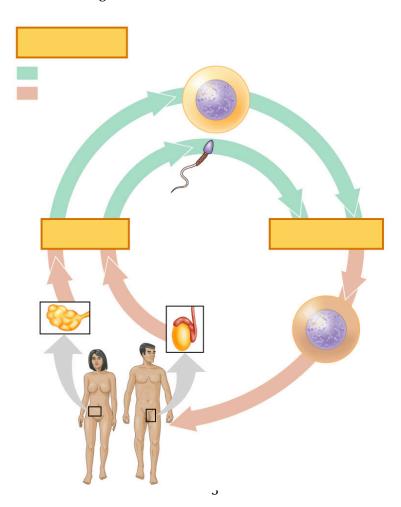

Section 2-7: Meiosis

Book Reading: Chapter 13 pages 238-249

Introduction to Genetics

- ❖ Genetics- define
 - Heredity- define
 - Gene
 - define
 - Segments of DNA that code for a specific trait
 - Locus- define
- Homologous Chromosomes
 - Homologous chromosomes are pairs of chromosomes with specific similarities
 - list
 - · Homologous chromosomes carry genes controlling the same
 - Humans have
 - Not the same thing as
 - Karyotype- *define*

 - Two Types of Chromosomes
 - Autosomes- *define*
 - Sex Chromosomes
 - list
 - Determine gender
 - o XX=
 - o XY=
 - Can also contain



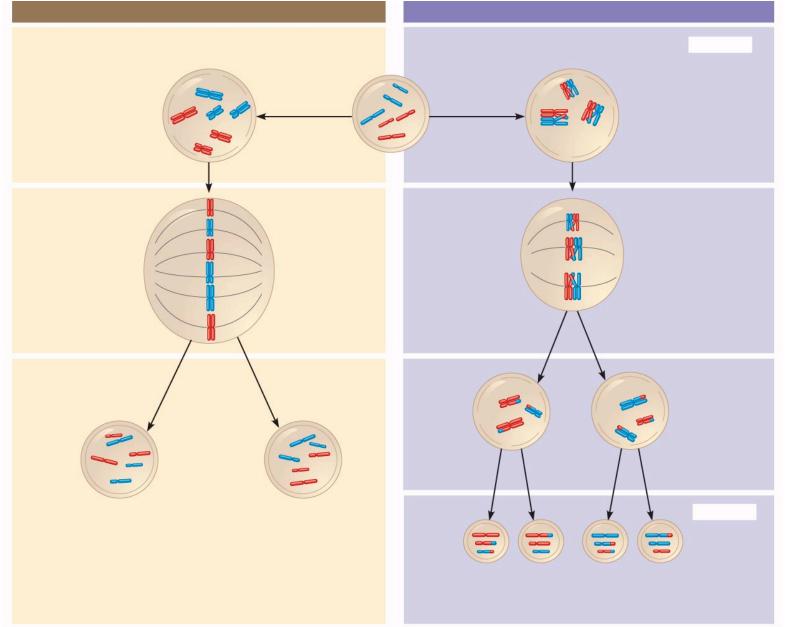
- Two Types of Cells
 - Somatic cells
 - _
 - All cells except what two kinds of cells
 - Produced via what process
 - Diploid cells
 - Diploid number of chromosomes
 - For humans 2n=
 - Gametes
 - Sex cells
 - What two kinds of cells specifically
 - Produced via what process
 - Haploid cells
 - Haploid number of chromosomes
 - For humans n=

Asexual vs. Sexual Reproduction

- ❖ Asexual Reproduction
 - Only
 - Offspring are *how do they compare to the parent organism* (unless there is random DNA mutation)
 - All cell divisions are
 - Advantages
 - •
 - Disadvantage
 - No variation=

- Examples:
 - :
- ❖ Sexual Reproduction
 - Two parents-
 - Offspring contain a mixture of DNA,
 - Occurs via specialized cells called
 - Gametes undergo
 - Advantages:
 - Variation=
 - Disadvantages:
 - •
 - _
- The Human Sexual Life Cycle
 - Life cycle-
 - Conception
 - Growth/development
 - Meiosis
 - Haploid gametes
 - Fertilization
 - Resulting structure=

Meiosis


- Interphase
 - Chromosomes are replicated
- Prophase I
 - Nuclear membrane disappears
 - Synapsis occurs

Tetrads form

- Chiasmata are visible-
- Metaphase I
 - Homologous chromosomes
- Anaphase I
 - Homologous chromosomes
- Telophase I/Cytokenisis I

- Cells are now diploid or haploid
- Each chromosome
- Prophase II
- Metaphase II
 - Chromosomes line up at the
- Anaphase II

- Telophase II/Cytokenisis II
 - How many new cells are formed
 - Are they identical or genetically unique
 - Each cell has how much of the original DNA?

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Origins of Genetic Variation

- Independent Assortment of Chromosomes
 - •
 - •
- Crossing Over
 - •
- Random Fertilization
 - •
 - •
 - -