# **Unit 1: Biochemistry**

Section 1-1: Elements of Life, Macromolecules, Origin of Macromolecules, Environmental Cycles Book Reading: Chapter 2, Section 2.1 pages 32-34; Preview Chapter 5 pages page 68-89 (you don't need to read in detail); Supplemental Reading Handout, Chapter 54 pages 1196-1197

#### Elements of Life (chapter 2, section 2.1)

- Essential Elements of Life
  - Element- define
  - Four that make up 96% of all living matter:
    - list
    - .
    - •
    - .
  - Remaining 4%:
    - list
    - .
    - .
    - .
  - Trace Elements- *define*

#### Macromolecules of Life (chapter 5)

- ❖ Macromolecule- define
- The four Macromolecules include
  - list
  - •
  - •
  - •

| Table 2. | 1 Naturally<br>the Huma | Occurring Ele<br>n Body         | ements in                             |
|----------|-------------------------|---------------------------------|---------------------------------------|
| Symbol   | Element                 | Atomic<br>Number<br>(See p. 34) | Percentage<br>of Human<br>Body Weight |
| 0        | Oxygen                  | 8                               | 65.0                                  |
| С        | Carbon                  | 6                               | 18.5                                  |
| Н        | Hydrogen                | 1                               | 9.5                                   |
| N        | Nitrogen                | 7                               | 3.3                                   |
| Ca       | Calcium                 | 20                              | 1.5                                   |
| P        | Phosphorus              | 15                              | 1.0                                   |
| K        | Potassium               | 19                              | 0.4                                   |
| S        | Sulfur                  | 16                              | 0.3                                   |
| Na       | Sodium                  | 11                              | 0.2                                   |
| Cl       | Chlorine                | 17                              | 0.2                                   |
| Mg       | Magnesium               | 12                              | 0.1                                   |

Trace elements (less than 0.01%): boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserve

❖ Elements within Macromolecules place a check mark in the box if the element is found in all of that type of macromolecule, write some if it is only found in some of that type

| Macromolecule | Carbon | Hydrogen | Oxygen | Nitrogen | Phosphorous | Sulfur |
|---------------|--------|----------|--------|----------|-------------|--------|
| Carbohydrate  |        |          |        |          |             |        |
| Lipid         |        |          |        |          |             |        |
| Protein       |        |          |        |          |             |        |
| Nucleic Acid  |        |          |        |          |             |        |

| <u>Origin of Organic Macromol</u> | cules (supp | lemental | reading | handou | it) |
|-----------------------------------|-------------|----------|---------|--------|-----|
|                                   |             |          |         |        |     |

| * | Atmosphere of Early Earth |
|---|---------------------------|
|   |                           |

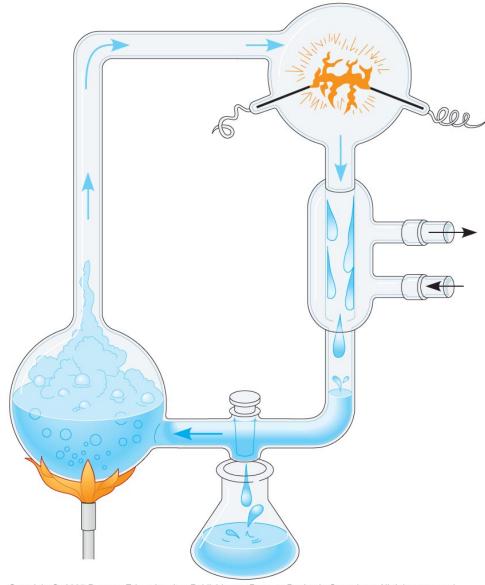
- Geological evidence suggests that Earth was formed when?
- Life formed about when?
- Earth's Early atmosphere is hypothesized to have contained:
  - List the elements or compounds with their names and chemical symbols

•

•

.

- There was NO what?
- The only source of O<sub>2</sub> was what?


## Miller-Urey Experiment

- Added all the components of earth's early atmosphere
- Added a spark to simulate lightning

• Results: what?

• Then added CO<sub>2</sub>, N<sub>2</sub> and SO<sub>2</sub>

• Results: what?



Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

## Cycles of Elements and Water in Nature (Chapter 54)

The Water Cycle

• Biological Importance: summarize

Available Forms: what state?

• Reservoirs: *summarize* 

• Key Processes:

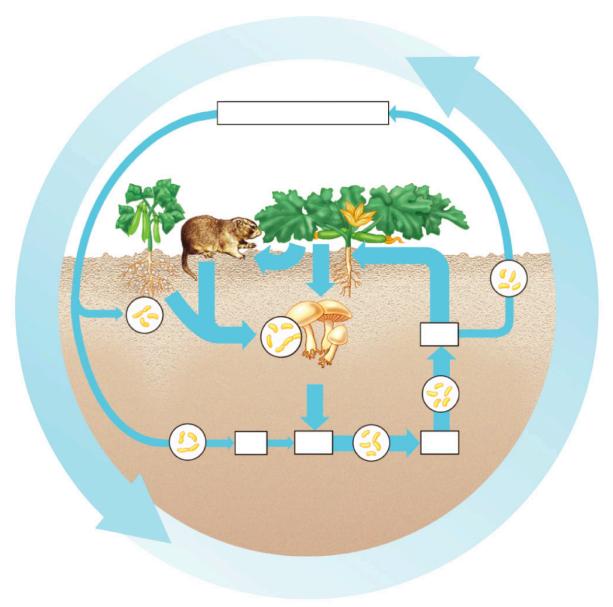
Evaporation

Condensation

Precipitation

Transpiration




Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

- The Carbon Cycle
  - Biological Importance: *summarize*
  - Available Forms: what state and/or form and how is it processes?
  - Reservoirs: *summarize*
  - Key Processes:
    - Photosynthesis
    - Cellular Respiration
    - Burning of Fossil Fuels



Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

- The Nitrogen Cycle
  - Biological Importance: summarize
  - Available Forms: where does it come from, how is it incorporated into life forms?
  - Reservoirs: *summarize*
  - Key Processes:
    - Nitrogen Fixation by bacteria



 $\textbf{Copyright} \circledcirc \ \textbf{2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.}$ 

## The Phosphorous Cycle

- Biological Importance: Biological Importance: summarize
- Available Forms: what compound and how is it put into organic life forms
- Reservoirs: *summarize*
- Key Processes:
  - Weathering
  - Assimilation by plants
  - Decomposition



Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.