HW1: Analyzing Free Energy

Name:	
Date:_	Per:

For a reaction to be spontaneous, the sign of ΔG (Gibb's Free Energy) must be negative. The mathematical formula for this value is:

 $\Delta G = \Delta H - T \Delta S$

Where...

 ΔH = change in enthalpy or heat of reaction

T= temperature in Kelvin

 ΔS = change in entropy or randomness

Directions: Complete the table for the sign of ΔG : +, -, or undetermined. When conditions allow for an undetermined sign of ΔG , temperature will decide spontaneity. Then answer the questions that follow.

ΔΗ	ΔS	ΔG
-	+	
+	-	
-	-	
+	+	

1.	The conditions in which ΔG is always negative is when ΔH is	and ΔS is
	The conditions in which 2d is divays negative is when 211 is	and 25 is

2. The condition in which Δg is always positive is when ΔH is _____ and ΔS is ____

3. Explain what must be true of temperature in each of the indeterminate conditions.

For questions 4-6 choose either "always" "sometimes" or "never" to complete the statement.

4. The reaction: NaOH (s) \rightarrow Na+(aq) + OH-(aq) + energy, will ______be spontaneous.

5. The reaction: energy + $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ will ______ be spontaneous.

6. The reaction: energy + $H_2O(s) \rightarrow H_2O(l)$ will ______ be spontaneous.

7. What is the value of ΔG for a reaction where the enthalpy change is -32.0kJ, the entropy change is 25.0kJ/K and the temperature is 293K.

8. Is the reaction in question #7 spontaneous?

9. What is the value of ΔG in a reaction where 12.0kJ of energy are absorbed, entropy decreases by 5kJ/K and the temperature is 290K?

10. Is the reaction in question #9 spontaneous?