Part 2: Le Chatlier's Principle Problems

Directions: Use the knowledge you gained form the demonstrations and class notes to predict the shifts in equilibrium for each of the following reaction systems. Remember to treat heat as a reactant if the value for ΔH is positive and as a product if ΔH is negative.

Refer to the reaction below to answer questions 1-5.

$$2NO_2(g) \Leftrightarrow N_2O_4(g)$$
 $\Delta H = -57.2kJ$

- 1. What direction will the equilibrium shift if NO_2 gas is added?
- 2. What direction will the equilibrium shift if the temperature is increased?
- 3. What direction will the equilibrium shift if the N_2O_4 is removed?
- 4. What direction will the equilibrium shift if the pressure is increase?
- 5. What direction will the equilibrium shift if N_2O_4 is added?

Use the reaction below to predict the effect of each of the conditions provided in numbers 6-10.

$$H_2(g) + Cl_2(g) \Leftrightarrow 2HCl(g)$$
 $\Delta H = -184kJ$

- 6. Addition of Cl₂
- 7. Removal of HCl
- 8. Increased pressure
- 9. Decreased pressure
- 10. Decreased temperature

List 5 changes in conditions would favor the production of products in the following chemical reaction.

$$PCl_5(g) \Leftrightarrow Cl_2(g) + PCl_3(g)$$
 $\Delta H = 88kJ$

- 11.
- 12.
- 13.
- 14.
- 15.