Components of Solutions

Defining Solutions

- Solute-____
- Solvent-___
- Solution-___

Solvation

- Water molecules are in constant _______
- When a solid is added, the water molecules bump into the solid crystals
- There is an ______ between the _____ of the water molecule and the ions or molecules , that is greater than the attraction between the ions or molecules
- The water molecules surround the ions, those ions move away from the crystals, exposing the ions or molecules underneath
- Diagrams:

Solution of Ions in Water

Solution of Molecules in Water

Describing Solutions Qualitatively

*	aturated Solutions
	Solutions that contain
	Any excess solvent that is added will
	Saturated Solutions exist in a dynamic equilibrium
*	insaturated Solutions
	Solutions that contain
	Any excess solvent that is added will
*	upersaturated Solutions
	Solutions that contain
	Supersaturated solutions are formed by the solvent to a temperature where
	will hold more solute, then it slowly
	• Supersaturated solutions are very unstable- adding a "seed" crystal or disturbing the solution will
	often cause the solute to "fall out" of solution
Describ	ng Solutions Quantitatively
*	ransmittance and Absorbance
	Percent Transmittance-
	Percent Absorbance
	Measured using an instrument called a

Formula for Molarity (M): Example- CalcuatingMolarity: A 100.5mL intravenous solution contains 5.10g of glucose (C ₆ H ₁₂ O ₆) What is the molarity of this solution? The molar mass of glucose is 180.6g/mole. Example- Preparing a Molar Solution: How many grams of CaCl ₂ would be dissolved in 1.0L of a 0.10M solution of CaCl ₂ ? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as Formula for Molality (m):		•	Molarity is a unit of concentration defined as
Example- CalcuatingMolarity: A 100.5mL intravenous solution contains 5.10g of glucose (C ₆ H ₁₂ O ₆ What is the molarity of this solution? The molar mass of glucose is 180.6g/mole. Example- Preparing a Molar Solution: How many grams of CaCl ₂ would be dissolved in 1.0L of a 0.10M solution of CaCl ₂ ? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as		•	Formula for Molarity (M):
Example- Preparing a Molar Solution: How many grams of CaCl ₂ would be dissolved in 1.0L of a 0.10M solution of CaCl ₂ ? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
Example- Preparing a Molar Solution: How many grams of CaCl ₂ would be dissolved in 1.0L of a 0.10M solution of CaCl ₂ ? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
Example- Preparing a Molar Solution: How many grams of CaCl ₂ would be dissolved in 1.0L of a 0.10M solution of CaCl ₂ ? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
 Example- Preparing a Molar Solution: How many grams of CaCl₂ would be dissolved in 1.0L of a 0.10M solution of CaCl₂? Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as 		•	
Dilution Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as			what is the molarity of this solution? The molar mass of glucose is 100.0g/mole.
Dilution Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as			
Dilution Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as			
Dilution Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as			
Dilution Dilution Dilution is the process of making a solution Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl ₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality Molality is a unit of concentration defined as		•	Evample- Preparing a Molar Solution: How many grams of CaCla would be dissolved in 1 01 of a
 Dilution is the process of making a solution			
 Dilution is the process of making a solution			
 Dilution is the process of making a solution			
 Dilution is the process of making a solution			
 Dilution is the process of making a solution			
 Dilution Formula: Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as 	•	Dilutio	
 Example- Dilution: What volume in milliliters of 2.00M calcium chloride (CaCl₂) stock solution would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as 		•	· · · · · · · · · · · · · · · · · · ·
would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as		•	Dilution Formula:
would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
would you use to make 0.50L of 0.300M calcium chloride solution? Molality Molality is a unit of concentration defined as			
Molality • Molality is a unit of concentration defined as		•	
Molality is a unit of concentration defined as			would you use to make 0.50L of 0.300M calcium chloride solution?
Molality is a unit of concentration defined as			
Molality is a unit of concentration defined as			
Molality is a unit of concentration defined as			
Molality is a unit of concentration defined as	٠.	Malalia	
·	•	Molalii •	
		•	·
		•	Formula for Molality (<i>m</i>):

Molarity

• Example-Calculating Molality: In the lab, a student adds 4.5g of sodium chloride (NaCl) to 100.0g of water. Calculate the molality of the solution.

Fac

ctor	<u>s that Effect Solubility</u>		
*	❖ Agitation		
	Agitation is the process of increasing the		
In general as agitation increases,			
*	Temperature		
	Adding temperature		
	In general as temperature increases,		
	Gases are an exception, as the temperature of a liquid-gas solution is increased, the solubility of the		
	gas		
*	Surface Area		
	Surface area is the amount of solute		
	In general as surface area increases,		
	Surface area example:		
*	Type of Solvent		
	The general rule is		
	Polar solvents dissolve		
	Nonpolar solvents dissolve		
	• Soluble-		
	Insoluble-Miscible-		
	Prisciple		
	• Imiscible-		
*	Amount of Solute		
	• The amount of solute that is able to dissolve is dependent on all the other factors		
	• Eventually,		
	Dynamic Equilibrium		

Reading Solubility Curves

- ❖ Solubility curves display the density vs. temperature of several solutions
- Reading a Solubility Curve
 - Each line represents a solution that is *saturated solution*
 - Saturated solutions exist in a *dynamic equilibrium* where solvation and crystallization are occurring at the same rate
 - Any point above the line where all the solute is dissolved at a certain temperature represents a supersaturated solution

Ele

		supersucur acea solution
	•	Any point below the line where all the solute is dissolved at a certain temperature represents an
		unsaturated solution
	•	Solutes whose curves move upward with increased temperature are typically <i>solids</i> because the
		solubility of solids generally increases with temperature
	•	Solutes whose curves move downward are typically <i>gases</i> because the solubility of gases generally
		decreases with increasing temperature
Electroly	<u>ytes</u>	
*]	Electro	olytes
	•	Electrolytes are ionic compounds that
	•	Dissociation is the
	•	Dissociation of NaCl:
<u>Colligati</u>	ive Pro	<u>perties</u>
* (Colliga	tive Properties
	•	Colligative properties are properties of solutions that are
*]	Boiling	Point Elevation: A colligative property
	•	Boiling point elevation is the
	•	The value of the boiling point elevation is
		meaning the greater the number of solute particles,
	•	Formula for Boiling Point Elevation:
		■ K _b =
		 The boiling point of pure water=
		■ K _b for water =
		■ <i>m</i> =

	•	Freezing point depression is th	e
	•	The value of freezing point dep	ression is
		meaning the greater the	e number of solute particles,
			-
	•	Formula for Freezing Point Dep	pression:
		■ K _f =	
			ire water=
*	Fyamr		ng Point: What are the boiling point and freezing point of a 0.029 <i>m</i>
•		us solution of sodium chloride (N	
Reactio	<u>n Equi</u>	ibrium and Le Chatlier's Princip	<u>le</u>
*	Chemi	cal Equilibrium	
	•	Many chemical reactions exist	n a dynamic equilibrium meaning
*	Le Cha	tlier's Principle:	
		•	
	•	In general	
		_	when it is moving from reactant to
		product	
		•	when it is moving from products to
		reactants	when it is moving from products to
	•		actants or Products
	•	Changes in Concentration of Re	
		_	
		Removing reactants:	
		Removing products:	

❖ Freezing Point Depression: A colligative property

 When pressure of a gas is increased, volume is
 When pressure of a gas is decreased, volume is
 Increasing pressure of a container in which two or more gases are reacting
•
•
•
 Decreasing the pressure of a container in which two or more gases are reacting
•
•
• -
Changes in Temperature
 Exothermic Reactions
•
• Represented by the symbol ΔH° , which for an exothermic reaction will have a
Increasing the temperature of an exothermic reaction
Decreasing the temperature of an exothermic reaction
 Endothermic Reaction
•
• Represented by the symbol ΔH° , which for an endothermic reaction will have a
Increasing the temperature of an endothermic reaction
Decreasing the temperature of an endothermic reaction
Examples:
 Use Le Chatlier's principle to predict how each of these changes would affect the ammonia
equilibrium system: $N_2 + 3H_2 \rightarrow 2NH_3$
 Removing hydrogen
 Adding ammonia
Adding hydrogen
 Predict how this equilibrium would respond to increasing temperature:

• Changes in Pressure and Volume

 $CO + Cl_2 \rightarrow COCl_2$ $\Delta H^{\circ} = -220 \text{ kJ}$