Chemistry Guided Notes Unit 5: Thermodynamics and Kinetics		Name: Period:	
ille 5.	Thermodynamics and Kineties	Date	1 criod
nergy	<u>L</u>		
*	What is Energy?		
	• Energy-		
	Chemical Potential Energy		
	• of atoms		
	• of atoms		
	• of bonds		
*	What is Heat?		
·	Heat (q)		
	Heat always flows from aob_	ject to a	object
	 Warmer object losses energy in the form of 	of heat and its temperati	ure
	 Cooler object gains energy in the form of l 	heat and its temperature	<u> </u>
	 NOT THE SAME AS TEMPERATURE 		
	Temperature (T)	_	
	Measuring Heat: Two Units		
	Calorie (cal)-	_	
	■ Joule (J)		
'herm	ochemistry and Enthalpy		
*	Thermochemistry		
•	Thermochemistry		
	Universe= System + Surroundings		
	System-		
	Surroundings-		
*	Enthalpy (H)		
	Enthalpy (H)		
	 Enthalpy of a Reaction (ΔH_{rxn})= 		
	Thermochemical equation are balanced equations	s that include values for	ΔH_{rxn}
	 Endothermic Reactions 		
	•		
	•		
	•		

Exothermic Reactions

	•		
	•		
	•		
Law			
Hess's La	aw- states that if you can add two or more th	nermochemical reaction equations to produce a	
final equ	ation for the reaction then the sum of the en	thalpy changes for the individual reactions is	
the enth	alpy change for the final reaction		
Three Ru	ıles:		
• I	f the reaction must be doubled,		
• I	f the reaction must be reversed,		
• A	Anything on both sides of the final equation o	can be	
Example	: Calculate the ΔH for the reaction 2S (s) + 3	$O_2 \rightarrow 2SO_3$ (g) using the information below.	
ä	a. $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$	ΔH= 198 kJ	
ŀ	$S(s) + O_2 \rightarrow SO_2(g)$	ΔH= -297kJ	
• S	 SO₃ is on the product side of the desired equation so reverse reaction a. 		
• 7	The coefficient of the $1^{ m st}$ reactant, S (s) is 2 in	the desired equation. Therefore, reaction b	
r	nust be doubled.		
• A	Add the equations together and cancel anyth	ing that occurs on both the reactant and	
ŗ	product side.		

Hess's Law

*	Sponta	aneity					
	•	Spontaneous Processes					
	•	Nonspontaneous Processes					
*	Entrop	oy (S)					
	•	Entropy (S)					
	• 2 nd Law of thermodynamics-						
*							
Gibb's Free Energy (G)							
	•	Relates and	and can be used to p	predict reaction spontaneity			
	•	Formula for Gibb's Free Energy:					
		 If ΔG value is negative, 					
 If ΔG value is positive, Spontaneity, Enthalpy, and Entropy 							
			Exothermic Reaction (-ΔH)	Endothermic Reaction (+ΔH)			
		Increased Entropy (+ΔS)					
		Decreased Entropy (-ΔS)					
<u>Specifi</u>	c Heat						
*	Specif	ic Heat (c)					
	•	Specific Heat (c)-					
	•						
	Substances with high specific heat						
		•					
		•					
		•					
		•					
		•					
		•					

Formula for Calculating Heat Released or Absorbed:					
• q					
if the value for q is negative,					
• if the value for q is positive,					
• m					
■ C					
■ ΔT					
❖ Law of Conservation of Energy					
Law of Conservation of Energy					
• 1st Law of Thermodynamics					
Heat lost by the must be absorbed by the					
Heat transfer is measured using a device called a calorimeter					
Two stacked styrofoam cups					

- Specific Heat Example Problems
 - Example 1: Calculating Heat- If the temperature of 34.4g of ethanol increases from 25.0°C to 78.8°C, how much heat has been absorbed by the ethanol? (The specific heat of ethanol is 2.44J/g°C)

• Example 2: Calculating Temperature- A 4.50g nugget of pure gold absorbed 267J of heat. What was the final temperature of the gold if the initial temperature was 25°C? (The specific heat of gold is 0.129J/g°C.)

• Example 3: Calculating Specific Heat- A 155g sample of an unknown substance was heated from 25.0°C to 40.0°C. In the process, the substance absorbed 5696 J of energy. What is the specific heat of the substance?

Activation Energy and Reaction Rates

Reaction Energy Diagrams

Reaction Progress

Reaction Progress

Activation Energy

❖ Factors that Affect Reaction Rates

- Concentration-
- Surface Area-
- Temperature-______
- Catalyst-____

