\qquad
\qquad

Graham's Law of Effusion

1. Write the formula for Graham's Law in the box to the right. \square
2. Calculate the ratio of effusion rates for nitrogen $\left(\mathrm{N}_{2}\right)$ and Neon (Ne).
3. Calculate the ratio of diffusion rates for carbon monoxide (CO) and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.
4. What is the molar mass of a gas that takes three times longer to effuse than helium? (The ratio of the rates is $3 / 1$).
5. What is the ratio of effusion rates of krypton and neon at the same temperature and pressure?
6. Calculate the molar mass of a gas that diffuses three times faster than oxygen under similar conditions. (The ratio of the rates is $1 / 3$).
7. Calculate the ratio of effusion rates for methane $\left(\mathrm{CH}_{4}\right)$ and nitrogen.

Dalton's Law of Partial Pressures

1. Write the formula for Dalton's Law in the box to the right.

2. Find the total pressure for a mixture that contains four gasses with partial pressures of $5.00 \mathrm{kPa}, 4.56 \mathrm{kPa}$, 3.02 kPa , and 1.20 kPa .
3. Find the partial pressure of carbon dioxide in a gas mixture with total pressure of 30.4 kPa if the partial pressures of the other two gasses in the mixture are 16.5 kPa and 3.7 kPa .
4. What is the total gas pressure in a sealed flask that contains oxygen at a partial pressure of 0.41 atm and water vapor at a partial pressure of 0.58atm?
5. Find the partial pressure of oxygen in a sealed vessel that has a total pressure of 2.6 atm and also contains carbon dioxide at 1.3 atm and helium at 0.22 atm .

Pressure Conversions: Perform the following conversions then summarize your answer in the table at the bottom.

1. Convert 33.6 kilopascals to the following units:
a. Atmospheres
b. Millimeters of Mercury
c. Pounds per Square Inch
2. Convert 8.4 atmospheres to the following units:
a. Kilopascals
b. Millimeters of Mercury
c. Pounds per Square Inch
3. Convert 16.5 psi to the following units:
a. Atmospheres
b. Kilopascals
c. Millimeters of Mercury

	Atmospheres (atm)	Kilopascals (kPa)	Millimeters of Hg $(\mathrm{mm} \mathrm{Hg})$	Pounds per Square Inch (psi)
	$\mathbf{1 ~ \mathbf { ~ t t m }}$	$\mathbf{1 0 1 . 3} \mathbf{~ k P a}$	$\mathbf{7 6 0} \mathbf{~ m m ~ H g}$	$\mathbf{1 4 . 7} \mathbf{~ p s i}$
1.	3.4 atm	33.6 kPa		
2.				
3.			16.8 psi	

